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Abstract. Using the density matrix renormalization group method (DMRG) we calculate the magnetiza-
tion of frustrated S = 1/2 Heisenberg chains for various modulation patterns of the nearest neighbour
coupling: commensurate, incommensurate with sinusoidal modulation and incommensurate with solitonic
modulation. We focus on the order of the phase transition from the commensurate dimerized phase (D)
to the incommensurate phase (I). It is shown that the order of the phase transition depends sensitively
on the model. For the solitonic model in particular, a k-dependent elastic energy modifies the order of the
transition. Furthermore, we calculate gaps in the incommensurate phase in adiabatic approximation.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 75.10.-b General theory
and models of magnetic ordering – 75.10.Jm Quantized spin models

1 Introduction

Low dimensional magnetic systems have attracted con-
siderable attention in recent years. Various theoretical
and experimental efforts have been made to understand
the fascinating low energy physics of quasi-one dimen-
sional gapped spin systems, such as spin-Peierls sys-
tems (CuGeO3 [1] or NaV2O5 [2,3]), Haldane systems
(e.g. Ni(C3H10N2)2N)2ClO4 [4]) and spin ladders (e.g.
SrCu2O3 [5] or Cu2(C5H12N2)2Cl4 [6]). Even if questions
still remain open, many of the experimentally observed
features can be already understood within the framework
of one dimensional Heisenberg chains with various cou-
plings (this includes also spin ladders [7]).

Some of these systems exhibit interesting features in
external magnetic fields, for instance, a transition from a
commensurate to an incommensurate phase. At this tran-
sition weak hysteresis effects are observed in CuGeO3 at
low temperatures [8,9] and Kiryukhin et al. found a small
jump in the incommensurability measured by X-ray scat-
tering [10–12]. These features are characteristic for a first
order phase transition. From the theoretical point of view,
no consensus has been reached so far on the order of the
transition. The phase transition was predicted to be of first
order by Cross [13]. Bhattacharjee et al. obtained the same
conclusion using a phenomenological Landau expansion
[14]. But mean-field calculations of Fujita and Machida
for a renormalizedXY -model display a second order phase
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transition [15] while Buzdin et al. [16] find a second order
phase transition only at T = 0 and a first order one for
T > 0 using essentially the same model as Fujita-Machida.
Horovitz underlines the importance of the correct treat-
ment of cutoffs when passing to the continuum limit
[17,18].

In this paper, we propose to clarify which parameters
influence the properties of the I phase with the help of the
DMRG method for finite systems. In Section 2 we calcu-
late magnetizations for different types of modulations and
show that the order of the D–I phase transition is model
dependent. In the I phase we calculate the magnetization
dependence of the two gaps ∆+/− corresponding to the
increase-decrease of the z component of the total spin by
unity [19].

For all calculations we have chosen parameter sets
which are convenient for the numerical calculations, i.e.
displaying small finite size effects. Computational aspects
are given in Section 3. In Section 4 we summarize the
results.

2 Magnetization

In the adiabatic approximation for the phonons the
modulation of the exchange couplings can be described
by parameters δi which are linked to the lattice distortion.
Thus the Hamiltonian includes an elastic energy which is a
positive quadratic form of the {δi}. In a first step we take
the elastic energy to be dispersionless, i.e. diagonal in real
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Fig. 1. Magnetization as a function of the magnetic field for
δ = 0.3, α = 0.1 (filled circles) and δ = 0.5, α = 0.2 (open
squares) for a 60 site chain. The lines are guides to the eye.

space

Ĥ = Ĥchain + ĤZeeman +Eelast (1)

Ĥchain =
L∑
i=1

(J(i)Si · Si+1 + JαSi · Si+2)

ĤZeeman = gµBHSz ,

Eelast =
K0

2

∑
i

δ2
i ,

J(i) = J(1 + δi) ,

where α denotes the relative frustration and Sz is the z
component of the total spin of the L-site chain. The last
two terms in (1) are the Zeeman energy and the elastic
energy associated to the lattice distortion.

2.1 Fixed modulations

As a starting point let us consider the simple case where
the lattice distortion is kept frozen as in the D phase even
in the presence of a magnetic field.

δi = (−1)iδ. (i)

The amplitude δ is treated as a fixed parameter. The
constant elastic energy is not taken into account for
the moment. Chitra and Giamarchi [20] calculated the
magnetization of frustrated or dimerized spin chains in
a magnetic field using bosonization techniques. Within
this continuum-limit approach the frustration and dimer-
ization cannot be treated simultaneously (double sine-
Gordon model). For α < αc and δ > 0 the contribution of
the frustration is assumed to be irrelevant and the model
reduces to an integrable sine-Gordon model. However, re-
cently it has been shown by Bouzerar et al. that this is
not the case [21]. The magnetization increases just above
the lower critical field Hc like m ∝

√
H −Hc [20,22]. The
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Fig. 2. Ground state energy per site of an 80 site chain as
a function of the wave vector q for various magnetizations m,
α = 0.35 and δ = 0.1.

same power law is found for α > αc and δ = 0. In par-
ticular, the transition to finite magnetization is of second
order in both cases. With the DMRG method, we find
this square root behavior in presence of both dimeriza-
tion and frustration. But as shown recently by Tonegawa
et al. by means of exact diagonalization [23] an additional
remarkable difference appears in some parameter range of
dimerization and frustration, i.e. a plateau at m = 1/4,
as indicated in Figure 1.

In the case of finite magnetization, it is known that the
commensurate dimerization pattern (i) is not appropri-
ate for describing spin-Peierls systems. For instance X-ray
measurements on CuGeO3 clearly show that the structure
of the lattice distortion becomes incommensurate under a
sufficiently large magnetic field [10–12]. Thus a more ap-
propriate choice for the modulation is,

δi = δ cos(qri) (ii)

as it was suggested in [19,24]. To begin with, q is con-
sidered as a free parameter which is fixed by minimizing
the total (free) energy. Note that for q 6= π the elastic
energy is q independent for the ansatz (ii) yielding only
a constant contribution at given amplitude which will be
dropped for the following consideration.

Using the Jordan-Wigner transformation the applied
magnetic field corresponds to a shift of the chemical po-
tential. For the XY -model with a finite magnetization
m = Sz/L, it is straightforward to show that an in-
finitesimal spin-lattice coupling leads to an instability at
momentum q = 2kF = π(1 + 2m). In the case of the
Heisenberg model, this relation is expected to hold true
as well [13,19,20,25,26]. We have confirmed numerically
for various sets of parameters δ, α and various system
sizes that the energy is minimum at q = π(1 + 2m) for a
given m. The ground state energy per site for H = 0 as
a function of q is plotted in Figure 2, for various magne-
tizations m at fixed δ = 0.1 and α = 0.35. The positions
of the cusps correspond exactly to q = π(1 + 2m). The
fact that one observes cusps and not smooth quadratic
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Fig. 3. Open symbols (left scale): ground state energies
E(m) − E(0) as a function of the magnetization for the si-
nusoidal modulation (ii) (δ = 0.2, α = 0.35) for chains of 100
(circles), 80 (squares) and 60 (diamonds) sites. To highlight the
discontinuity at m = 0 a cubic fit for m > 0 is depicted with a
solid line. The inset shows an enlargement and the tangent for
m = 0.05 as described in the text. Filled circles (right scale):
ground state energies E(m)−E(0) for the adaptive modulation
from (iii), K0 = 1.7 (δ ≈ 0.2 in the D phase) and α = 0.35.
The dot-dashed line is just a guide to the eye.

minima is linked to the divergence of the susceptibility at
q = π(1 + 2m), i.e. an instability even for infinitesimal
coupling. At least for α < 0.5 and arbitrary δ this is the
generic behavior, and confirms the relation between the
wave vector and the magnetization.

Henceforth, we fix q = π(1 + 2m) and investigate the
magnetization as a function of the applied field. We find
that the incommensurate exchange coupling (ii) has a
rather strong effect on the magnetization leading to a first
order phase transition. To elucidate this we present the
magnetic ground state energy per site E(m) = (〈Ĥchain〉+
Eelast)/L as a function of the magnetization in Figure 3.
Results for several chain lengths are included to show the
absence of finite size effects.

The salient feature of E(m) for sinusoidal modulation
is the discontinuous jump at m = 0. To understand this
jump it is helpful to look at the averaged squared distor-

tion
1

L

∑
i δ

2
i which takes the value δ2 at q = π and δ2/2

otherwise. We see that in the D phase all δi are max-
imally distorted whereas in the sinusoidally modulated
phase there are also large regions with weaker distortion.
So neither the elastic energy is continuous in the limit
q → π nor is the magnetic energy since it reacts to the
distortions.

To deduce the dependence m(H) from Figure 3 we
have to resort to Maxwell’s construction, i.e. we com-
pute the convex hull. The magnetic field defines the
slope gµBH = ∂E/∂m of the tangent which touches the
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Fig. 4. Magnetization as a function of the applied magnetic
field for α = 0.35 and δ = 0.2 of an 80 site chain as deduced
from the open squares in Figure 3. The inset shows an enlarge-
ment near Hc for 100 (circles), 80 (squares) and 60 (diamonds)
site chains.

convex hull at the value m (Legendre transformation). So
one obtains m(H). The jump in E(m) leads to a first or-
der transition with a jump in m(H). The resulting m(H)
deduced from Figure 3 is depicted in Figure 4.

Calculating the corresponding local magnetizations
[19] one finds that there is a large alternating local mag-
netization close to each zero of the modulation. Summing
the local magnetizations around each zero one finds a con-
tribution of Sz = 1/2, i.e. of one spinon.

2.2 Adaptive modulations

In the previous section we chose a sinusoidal modulation
and found that q = π(1 + 2m) minimizes the total en-
ergy. We now proceed in a more general way by mini-
mizing the total energy including the elastic energy term
with respect to all the parameters δi. In other words, we
allow the lattice distortion to adapt to the spin system.
Within our DMRG approach we follow the iterative pro-
cedure proposed by Feiguin et al. [28] who applied exact
diagonalization and Monte-Carlo-Simulations to a slightly
different model. The dimerization amplitudes δi are cal-
culated self-consistently by minimizing 〈Ĥchain〉 + Eelast
which leads to

J〈Si · Si+1〉+K0δi −
J

L

∑
i

〈Si · Si+1〉 = 0 , (iii)

where the last term ensures that the δi satisfy the con-

straint
∑L
i=1 δi = 0. Following [28] this equation is used

to improve iteratively the local distortions δi. The expec-
tation values are taken with respect to the lowest-energy
state of the previous iteration. Starting from the sinusoidal
modulation (ii) we find that four to five iterations are
enough to achieve a stable pattern that does not change
significantly on further iterations as shown in Figure 5.
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Fig. 5. Incommensurate modulation: local distortions δi versus
site index i for the first four iterations starting from a sinusoidal
modulation (filled circles); 100 sites, α = 0.35, K0 = 3.3, and
Sz = 1.

The envelope of the final modulation can be fitted by
a product of complete Jacobi elliptic functions of modulus
k as predicted analytically [17,16,15]. For very low mag-
netization, i.e. low concentration of solitons, the vicinity
of each zero resembles a tanh [27].

Within the self-consistent approach we calculate E(m)
per site as plotted in Figure 3 (filled circles). E(m) is con-
vex but in contrast to the curves with fixed sinusoidal
modulation it is continuous. The convexity will be shown
more clearly below in a modified representation. Thus we
have a continuous, second order transition from the D
phase to the adaptive I phase. The corresponding mag-
netization m(H) is shown in Figure 6 (filled circles).

The enormous steepness of the continuous magneti-
zation is explained by the following argument. For non-
interacting spinons which are far enough from each other,
the energy per site E(m) − E(0) is proportional to the
number of spinons and hence to the magnetization m (see
also filled circles in Fig. 3 for small m). The proportion-
ality constant e0 is the energy of a single spinon and de-
termines the critical field 2e0 = gµBHc, since two spinons
are created by breaking one singlet. Because the spinons
are exponentially localized (cf. Fig. 5) two spinons at mu-
tual distance l have additionally an exponential interac-
tion w(l) = w0 exp(−cl). Here c is a constant of the order
of the inverse correlation length and w0 is a proportion-
ality constant which is positive for repulsion and nega-
tive for attraction. The typical distance of the spinons is
l = 1/(2m) since each spinon carries spin S = 1/2. Hence
for not too large values ofm the total energy in an external
magnetic field H equals

E(m)−E(0) = gµB(Hc −H)m+ w02me−
c

2m . (2)

By minimizing this expression for repulsion (w0 > 0) one
derives H(m) which increases exponentially slowly just
above Hc. This in turn leads to the drastic increase of m
as depicted in Figure 6.
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Fig. 6. Filled circles: Magnetization for the adaptive modula-
tion (K0 = 1.7, α = 0.35) as deduced from the corresponding
curve in Figure 3. Open squares: magnetization with a disper-
sive elastic energy as discussed in the text. K̃ = 6K0, K0 and
α unchanged.

To present the effects of soliton interaction more
clearly we pass to an affine representation of the ground
state energy E(m) by investigating

Eeff (m) := E(m)−E(0)− gµBHcm (3)

which would be constantly zero if no interaction between
the solitons existed. Note that Eeff (m) is convex if and
only if E(m) is. In Figure 7 the generic resulting curves
are shown with filled symbols (solid line) for the XY -
model and the spin isotropic XXX-model. The results for
the XY -model are obtained for an infinite system with-
out frustration by a continued fraction technique based
on Green’s functions [19]. Using this method the simpler
solvability of the XY -model allows to iterate up to 80
times for an infinite chain with periodicities up to 120.
These data are included as an additional check that no
spurious effects due to finite size or insufficient iteration
are investigated.

The results in Figure 7 for a dispersionless elastic en-
ergy comply perfectly with exponentially repulsive soli-
tons (2). There is no sign of a long range interaction∝ 1/l
as postulated by Horovitz for finite cutoffs as they oc-
cur naturally in discrete lattice models [17,18]. In partic-
ular, no attraction for dispersionless elastic energies are
found [29].

A dispersionless elastic energy is of course a drastic
simplification of the real phononic system. Cross already
argued [13] that a pinning in k-space should influence
the order of the transitions. We expect that the D → I
phase transition becomes first order if the elastic energy
itself favors the distortion at k = π. This means that
K̂(π) is minimum if the elastic energy can be expressed as

Eelast = 1
2

∑
k K̂(k)|δk|2. The argument compares, for a

given wave vector q close to π, the elastic energy K̂(q) of a
sinusoidal modulation (ii) with the one of an array of do-
main walls with the same periodicity 2π/q. Since the lat-
ter has also contributions of higher harmonics ± 3q, ± 5q,



F. Schönfeld et al.: On the incommensurate phase in modulated Heisenberg chains 525

0.00 0.05 0.10 0.15
m

−0.01

0.00

0.01

0.02

0.000

0.005

0.010

0.015

0.020

E
ef

f(m
) 

   
   

   
   

   
   

  

XY

XXX

Fig. 7. Affine representation of the ground state energy. The
long-dashed lines indicate the convex hulls to the lower curves.
XY -model: The upper solid curve shows Eeff for a dispersion-
less elastic energy with K0 = 0.625. The lower solid curve
shows Eeff for a dispersive elastic energy (K̃ = 6K0) as dis-
cussed in the following section. Both curves are obtained via
the continued fraction technique. The filled and open dia-
monds depict DMRG results for an 80 site chain. XXX-model:
DMRG results in the dispersionless case (filled circles) and for
K̃ = 6K0 (open squares) for K0 = 1.7 and α = 0.35. The
dashed lines are guides to the eye.

± 7q, ... its elastic energy is
∑
n |a(2n+1)q|

2K̂(q) where the

coefficients |a(2n+1)q|
2 are symmetric about π. Thus the

elastic energy is higher than the one for the sinusoidal
modulation. By this mechanism higher harmonics are sup-
pressed due to the elastic energy leading to a smoother
and more sinusoidal modulation. If the convex curve for
the adaptive modulation in Figure 3 is influenced in a way
to approach the discontinuous curve for sinusoidal modu-
lation one must expect a region of concavity for small m.
Hence the convex hull differs from the curve itself and a
jump in the magnetization occurs: the transition is first
order. Put differently, we expect that a dip in the elastic
energy at the zone boundary leads to an attraction of the
solitons.

To investigate our hypothesis numerically we use
K̂(k) = K + 2K̃ cos(k) with K0 = K − 2K̃ kept fixed
to refer to the same amplitudes in the D phase. This elas-
tic energy corresponds in real space to

Eelast =
1

2

∑
i

(
Kδ2

i + 2K̃δiδi+1

)
=

1

2
δ+ K δ , (4)

where δ is a vector with components δi and K is a cyclic
tridiagonal L×L symmetric matrix of coupling constants
with diagonal elements K and off-diagonal elements K̃.
Generic results for the energies Ẽ(m) in affine represen-
tation are depicted with open symbols (solid line) in Fig-
ure 7. We find indeed a concavity for small values of m.
This implies soliton attraction and a first order transition.
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Fig. 8. Modulations for Sz = 1 for the same parameters as in
Figure 7 for the XXX-model.

Furthermore, we show in Figure 6 the resulting magne-
tization curves with and without dispersion of the elastic
energy. The difference between the second order transition
for the elastic energy without dispersion and the first order
transition with dispersion is clearly visible. Additionally,
the critical field Hc at which the transition occurs rises
on inclusion of the dispersion. This complies also with the
above consideration since the energy of a single soliton
rises due to K + 2K̃ cos(k) > K0 except at k = π for

K̃ > 0.
Finally, in Figure 8 the modulation patterns with and

without dispersion are compared. Indeed, the inclusion of
K̃ > 0 makes the modulation softer and more sinusoidal.
In conclusion our numerical results convincingly corrobo-
rate our expectations for the effect of a dispersive elastic
energy.

Numerically, we are not able to decide whether an ar-
bitrarily small K̃ already yields a soliton attraction. For
smaller values of K̃ the minima in the affine representa-
tion occur for smaller and smaller magnetization and they
are more and more shallow. We expect that the soliton at-
traction exists down to arbitrarily small values of K̃ but it
may become irrelevant in practice due to the exponential
smallness of the corresponding energies.

We also investigated negative values of K̃. No qualita-
tive change of the soliton interaction was found in com-
parison to the dispersionless case. The iterative procedure,
however, becomes quite unstable already for small nega-
tive values of K̃.

2.3 Adiabatic gaps

So far we aimed at the average magnetization as a function
of the applied magnetic field. Another interesting quantity
which is accessible once E(m) can be computed are the
adiabatic gaps. It is a so far unsettled question whether
spin-Peierls systems have or have not gaps in the incom-
mensurate phase.

On the one hand, it seems clear that the incommensu-
rate modulation pattern can be shifted along the chains
without energy cost. This is certainly true in the continu-
um description and thus most probable also for not too



526 The European Physical Journal B

small correlation lengths. This quasi-continuous symme-
try gives rise to quasi-Goldstone bosons called phasons
which are gapless [14]. They do not change the spin sector
and thus have ∆Sz = 0. The physics of phasons is be-
yond an adiabatic treatment of the lattice distortion since
within an adiabatic treatment the distortion is assumed
to be fixed.

A different issue is the question whether the gaps ∆±
corresponding to ∆Sz = ± 1 are finite or not. Note that
these gaps do not need to be equal since the spin rotation
symmetry is broken for finite magnetization. From a non-
adiabatic viewpoint one can still infer from the smoothness
of the E(m) curves that there are no such gaps in the I
phase since the modulation adapts always to the average
magnetization. Applying, however, an operator like S+(k)
or S−(k) [19,25] and asking for the accessible excitation
spectrum may lead to a different answer. These operators
act only on the spin part of the ground state and leave the
modulation unchanged. Thus it is not unreasonable to ex-
pect that the gapless excitations are not accessible if their
access required a re-arrangement of the whole, in reality
three-dimensional, modulation. The underlying question
is whether the states S±(k)|Sz〉 are orthogonal to |Sz±1〉
or not, if we denote by |Sz〉 the ground state for the mag-
netization Sz .

Here we will investigate the simpler question whether
in the strictly adiabatic framework the gaps ∆+ are finite
or not. Uhrig et al. [19] were only able to compute∆++∆−
since this quantity did not require the knowledge of the
corresponding magnetic field.

We define by E(m,H) := E(m)−mgµBH the ground
state energy with self-consistently optimized modulation
{δi}. By

E±(m,H) :=
1

L
〈Ĥchain〉

∣∣∣
Sz=mL±1

+
K0

2L

∑
i

δ2
i −

(
m±

1

L

)
gµBH (5)

we denote the ground state energy with one additional
spin flipped upward (+) or downward (−), respectively,
but with the modulation {δi} belonging to Sz = mL, not
to Sz = mL± 1. This means that for E±(m,H) the mod-
ulation is not optimized for the given magnetization. This
corresponds to the situation accessible by application of
S+(k) or S−(k) without reaction of the lattice part. Then
the gaps are defined by

∆±(m) = E±(m,H)−E(m,H) . (6)

The gaps ∆+ and ∆− for a 100 site ring are displayed
in Figure 9 for α = 0.35 and K0 = 2.38 corresponding
to δ ≈ 0.14 in the D phase. Finite size effects are not
yet completely negligible, but the qualitative behavior is
the one shown and is in agreement with previous self-
consistent renormalized Hartree-Fock results [19].

Most importantly, we can show by Figure 9 that both
gaps are indeed finite and of equal order of magnitude.
It is interesting that apparently ∆+ is smaller at small
magnetization and ∆− is smaller at larger magnetization.
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Fig. 9. The energy gaps ∆+ (filled squares) and ∆−(open
squares) as a function of the magnetization for L = 100, α =
0.35 and K0 = 2.38

At least in the adiabatic approach, we can show that even
the I phase has gaps. It would be interesting if any ex-
perimental evidence in favor of the existence of these gaps
was found.

3 Computational details

In our DMRG calculation [30,31] we apply periodic
boundary conditions to minimize finite size effects. We
keep 128 (64) states in the truncation procedure. To ac-
count for the incommensurate structure we use the finite
size algorithm [30,31]. In the first steps where the system
is iteratively increased we use the reflection of the left hand
block to build up the superblock although the reflection
symmetry is not given at this stage. This initial error is re-
duced either by supplementary sweeps through the system
of the desired length or by intermediate sweeps through
the system the length of which is commensurable with the
lattice modulation. We tested the accuracy of the DMRG
results by comparing the lowest energies of the XY -model
with sinusoidal modulation in different Sz-subsectors with
exact results for a 60-site ring. Keeping 128 (64) states we
find the typical error to be smaller than 10−6 (10−5) for
Sz = 0 and 10−5 (10−4) in higher Sz-subsectors. For the
selfconsistent calculations in the case of adaptive modula-
tions we used the sinusoidal modulation (ii) as a starting
configuration for the curves presented. For larger dimer-
izations, however, it is more convenient to start with a
step-like modulation since the correlation lengths become
very small. Having calculated the ground state in the cor-
responding Sz-subsector we use equation (iii) to deduce
the improved set of {δi}. This step is repeated (typically
6 to 10 times) until the change of the ground state energy
becomes sufficiently small, i.e. of the order of the trunca-
tion error.

For the XY -model we can compare the selfconsistent
DMRG results for finite chains with these of the continued
fraction technique [19] in the thermodynamic limit. We
find that the error due to finite size effects and due to the
truncation of the Hilbert space is at most of the order of
10−4 (see upper part of Fig. 7). This accuracy is by far
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sufficient for the presented qualitatively analysis of the
phase transition.

4 Summary and discussion

In this work we considered modulated S = 1
2 Heisenberg

chains with finite magnetization. Three classes of modu-
lation were investigated: (i) fixed dimerization, (ii) fixed
incommensurate sinusoidal modulation and (iii) adaptive
incommensurate modulation. Our main interest was to in-
vestigate the dependence of the magnetization m on the
applied magnetic field H.

For scenario (i) we found a second order transition to
finite magnetization by means of the finite size DMRG
method in agreement with previous calculations. The in-
crease of m just above the critical field Hc is characterized
by a square root behavior m ∝

√
H −Hc.

For scenario (ii) we showed that the system favors an
incommensurability corresponding to the magnetization
q = 2kF = 2π(1/2+m). A prominent first order transition
is found. This finding could be explained by computing
the discontinuous dependence of the ground state energy
E(m) on m at m = 0. The discontinuity is linked to the
discontinuous jump of the root-mean-square of the local
distortions on passing from dimerization (q = π) to a long-
wave length modulated dimerization (q ≈ π).

In scenario (iii) we determined iteratively the mod-
ulation which minimizes the total energy including a
quadratic elastic energy. Again we find a periodicity cor-
responding to the magnetization q = 2π(1/2 + m). The
modulation, however, corresponds for low magnetization
rather to a soliton lattice. This means one has differently
dimerized regions separated by domain walls. Each do-
main walls carries one S = 1/2. We find a crossover from
the solitonic picture at low magnetization to a sinusoidal
modulation at higher magnetizations. The transition to fi-
nite magnetization is second order although the increase is
exponentially steep. The inclusion of a positive dispersion
of the elastic energy alters the order of the transition. It is
first order then. An exponential attraction of the solitons
was identified.

As another interesting quantity we calculated the adi-
abatic gaps ∆+/− corresponding to the increment (decre-
ment) of the magnetization by unity. The independent
determination of these gaps requires the complete knowl-
edge of E(m). The calculation was also done for scenario
(iii). It was shown that these gaps are finite in the adia-
batic treatment.

The second order phase transition in the com-
mensurate case (i) is in agreement with the fact
that measurements under applied field for instance on
Cu2(C5H12N2)2Cl4 show no hysteresis effects [6]. This
substance is found to be an antiferromagnetic Heisenberg
ladder which is equivalent to a strongly dimerized quasi-
one-dimensional Heisenberg chain. The magnetization in-
creases continuously. The expected square root behavior
near Hc, however, was not observed.

We do not know of a substance which can be described
by pure sinusoidally modulated exchange couplings.

The modulation in the incommensurate phase of CuGeO3

is in fact very close to a sinusoidal modulation [10,
11]. Recently Lorenz et al. [32] measured the mag-
netic field dependence of the spontaneous strain ε(H)
in CuGeO3 which is in first approximation propor-
tional to the elastic energy associated to the lattice
distortion. It decreases very fast near Hc and satu-
rates approximately at 1/4 of the value in the dimer-
ized phase for H ≈ 22 T. One can conclude that
there is a crossover from a solitonic distortion pattern
for small magnetizations to a sinusoidal one for larger
magnetizations. Our model allows – for parameter val-
ues reasonable for CuGeO3 within a one-dimensional ap-
proach α = 0.35, K ≈ 18 (⇒ δ = 0.014 in the D phase
[33–35]) – to describe the above crossover quantitatively
[32].

The feature so far not understood in CuGeO3 is the
first order phase transition D → I. From our findings
it is tempting to attribute this weak first order prop-
erty to a positive dispersive elastic energy, i.e. a dip in
ω(k) at k = π. Unfortunately, there is no experimen-
tal indication for such a feature in the phonon spectra
[36]. The spring constant K̂(k), however, in the adiabatic
treatment is proportional to ω(k)/g2(k) where ω(k) is
the phonon energy measured by Braden et al. [36]. The
momentum-dependent spin-phonon coupling g2(k) is not
known presently and may account for the dispersive be-
havior needed to explain the first order transition D → I
observed in CuGeO3. At the present stage, we may also
speculate that the neglected interchain couplings [37] are
decisive for the order of the transition. From our present
results we understand that the order of the transition is
influenced by the microscopic details of the model.

The finding of finite adiabatic gaps in the incommensu-
rate phase should encourage experimental work to verify
or to falsify this feature, for instance, in CuGeO3.
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